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Photophysics of Aqueous Pt(CN)42'

by John W. Schindler’, Robert C. Fukuda and Arthur II. Adamson

Department of Chemistry, University of Southern California, Los Angeles, \'

California, 90007

Absgract 1

¥
A detailed study of the non-Beer's law behavior of the absorption

features of the u.v. spectrum of aqueous K2Pt(CN)4 and BaPt(CN)4 allows
a more definitive set of excited state assignments than previously 'i
possible for the monomer. Concentration dependence, quenching, and ]
lifetime studies of the several room temperature emission features

allow a distinction between fluorescences and phosphorescences, and

a probable assignment as to the oligomers responsible. Two excited

state absorptions are found, and a long lived chemical transient.
"
A
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Introduction

The tetracyanoplatinites, known for well over a hundred years,
have been variously studied by quite a number of investigators. Our
interest, however, was stimulated by recent work of Gliemann, Yersin,
and co—wor-kers]'9 who studied the low temperature emission from various
salts of Pt(CN)42-. They concluded that the stacking which occurs in the
crystal leads to a splitting of the platinum z-axis orbitals, the emission
properties being sharply dependent on the Pt-Pt distance, R. OQur
interest was in whether stacking association might occur in solutions
and, if so, in the consequent photophysical and photochemical behavior.

Emission from aqueous solutions of the Ba, Mg, and K salts is well
known,w"15 the most recent work being that of Rossiello and Furlani]6
and Webb and Rossieno.17 The matter of possible oligomer formation in
solution has not been directly studied, however, nor have there been

ym’]9 did conclude

any clear assignments of the emission features. Da
that since the tetracyanoplatinites form insulating crystals in which
the molecular units are clearly distinguishable, it seems a priori
probable that the lowest crystal excited states are neutral Frenkel excitons
formed from  simple molecular transitions coupled by an intermolecular
interaction potential. The simplest approximate treatment is by
Dadeov theory.20 One predicts a shift to Tower energy of the transition
which is polarized along the Pt-Pt axis, or the z-direction, proportional
to R™3 (as observed}.

The absorption spectrum of Pt(CN)42' has been analyzed theoretically

21-33

by various authors, tut only one.paper has specifically attempted a

treatment of the dilute zsuecus solution spectrum.29 The spectrum is




complex; there are four distinct but non-symmetric features which may be

deconvoluted intosix gaussian components.

Experimental

Materials. - The tetracyanoplatinite salts were prepared by a

modification of a literature method.34

To platinum(II) chloride (Alpha-
Inorganics) was added a 20% excess of potassium cyanide dissolved in a
minimum of water. The resulting solution was filtered and the filtrate
evaporated at 60 to 80 °C to about half the volume (12 cm3 for 5 g PtClz)
and allowed to cool. The resulting crystals could be recrystallized from
dilute aqueous potassium cyanide. Ba[Pt(CN)4].4H20 was prepared by
adding a slight excess of barium chloride to a warm concentrated solution
of the potassium salt of the complex, filtering off any Ba(OH)2 that
formed. Crystals separated on cooling, and were recrystallized from
dilute aqueous barium chloride. Other chemicals used were of reagent

grade.

Absorption spectra. - Routine spectroscopic measurements were made

by means either of a Cary model 14R or a Beckman Acta MVI recording
spectrophotometer. In order to examine the concentration dependence

of the more intense absorption bands, however, it was necessary to use
a micrometer, variable path-length cell (Beckman-Research and Industrial
Instruments Co., Ltd., England, model BC-14)., Pathlength settings would
be read to 0.0005 cm directly and to 5x10°° cm with the vernier. The
scale was calibrated by means of measurements on standard potassium
chromate solutions. The cell could bé thermostatted to + 1 °C.

Emission spectra. - !'ost of the measurements were made with the use

of an Anincc model 4-8400 excitation grating monochromater and model

4-8401 emission grating monochromator. Excitation was by a 200 } Xe-Hg




lamp and the detector was a Hamamatsu R446 photomultiplier tube (PMT).

Excitation spectra were run on a Perkin-Elmer model MPF-3 spectro-
YR 35

fluorimeter (R446 PMT) or a Perkin-Elmer model 650-10S instrument equipped

with either a R454 or a R928 PMT. A1l emission spectra are uncorrected.

Time-resolved nmeasurements. - Emission lifetimes and time-resolved 4

emission spectra were obtained by means of a Korad pulsed Nd-glass

36,37

laser system previously described. Typically, a 20 nsec pulse of

353.3 nm wavelength was used for excitation, and a 14 stage RCA 7265 PMT
as detector. Suitable filters were used to screen out scatterad light.
Two sets of emission spectra were obtained with the use of an optical
multichannel analyzer (OMA) detector (courtesy of EG and G PARC) which
included a model 1205A QMA, model 1211 high frequency pulse generator,
and model 12058 silicon intensified vidicon (SIT). Transient absorption
spectra were determined with the use of a monitoring beam at right
angles to the excitation pulse, again as previously described.37’38

A standard polarcid film was used to verify the polarization of the

emissions. The transmission of crossed polaroid films varied with wavelength,

but was a maximum of 0.4%.
Qesults

Abscrption spectra. - The results of a series of measurements using

tue micrometer cell are shown in Fig. 1. The features of interest are
ta2 lack of concentration dependence of the peak at 280 nm and the 1
swronjly non-Beer's law behavior of the long wavelength tail, which

grows to a strong shoulder in 0.635 M K2Pt(CN)4. The extinction coefficients

in the figure are apcarent ones, based on the Pt{II) formality, C. 1If

the 1ong wavelengin feature is cue to a single oligomer formed according




to the equilbrium

nPr(on),”” Kk fee(en), 2] () -

then if most of the complex is monomer, the apparent extinction coefficient

of the long wavelength region should be given by ¢ = enKCn'1 where

app
€n is the extinction coefficient of the oligomer. As shown in Fig. 2,

a satisfactory fit was obtained with (n-1) = 2 or n = 3, so that trimer
formation is indicated.

The apparent extinction coefficients at 366 nm for a 0.236 formal
solution obey a linear Arrhenius plot, with a slope corresponding to
a AH for reaction (1) of - 7.2 kcal mole-]. Although not studied in

detail, increasing ionic strength led to increasing ¢.__, interpreted

app
as increasing association, as might be expected.

It was of interest to look for non-Beers law behavior in the rest
of the absorption spectrum. The results are shown in Fig. 3. Ba[Pt(CN)4]
was used because qualitative indications were that K for association was
larger with Ba2+ as the counter ion that with K+. It was thus possible
to work with Tower concentrations, a necessity to avoid reaching the
Timit of the micrometer cell. That is, the intensity of the 216 peak is
so large that a Beers izw study woulc have been inaccurate if the potassium
salt had been used. =2: r~3y be seen in tre figure, the intensity of both
the 216 nm and the 3% rm pa2:ks is reduced at higher concentrations,

-

while that of the 77 -~ :23v iz .unafiected. The fractional reductions

in the former peavs 2-¢ -t “'c¢ :2nme, indicating that oligomer absorption

does not go to zerd ¢~ it Lre tiEn one component"is present, only one

0f which s conceatrz-i:r sencitive, Thé latter is the more likely

uo;sibility; Mar:: -2 “il’er:t do tonclude that both features should %
be split into paiv- < -aussizn ccmponents: The actual data are as
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follows. For the dilute solution €app is 2.30x104 at 216 nm and 1.19x104 at
255 nm, in M']cm'] units, while for the concentrated solution the values

are 19,650 and 10,190, respectively. The dashed curve in the figure
indicates what the absorption spectrum might be for an oligomer-only
solution.

Emission spectra. - The emission shown by aqueous Pt(CN)42' is

quite complex in its behavior. As illustrated in Fig. 4, the spectrum
is concentration dependent, The feature around 455-460 nm, labelled II,
is barely evident with a 0.56 M solution, strengthens with 0.70 M
solution, and becomes an actual maximum if the ionic strength is raised.39
The emission is evidently associated with sdme oligomer. Feature IV,
at 350 nm, is observed with 313 nm excitation; its concentration dependence
was not studied because of absorption problems. Note that at 313 nm
excitation feature III, at 410 mm is unchanged from 366 nm excitation,
while feature I1 is essentially absent, presumably because of the Tow
concentration used. Feature I is shifted to shorter wavelengths relative
to its position with 366 nm excitation. Finally, there is an indication
of a shoulder on the long wavelength side of feature I, roughly in the
550 nm region.

Some of the above observations have been reported previously.
Khvostikov10 saw an enission at 525 nm with a resolved shoulder at
555 m, ard Rossiellc ard I—'ur'lam']6 found emissions at 410 and 552 nm.
The two sets of authors trus cover our features la, I, and III.
Features II and IV apresar io be newly observed in this work.

In a more quantitative investigapion of concentration dependence,
we find that feature I =% 410 nm (with 366 nm excitation) varies

linearly with €7, witr 2:rr intercept, over the range 0.392 to 0.560 M.

This behavior contrasts with the conclusion of Rossiello and Furlani




that the 410 emission is due *o dimer formation. These authors, however,
do not give their basis for this conclusion.40 The peak maximum in the
480-530 nm region shifts with concentration, note Fig, 13 of Ref. 38,
unlike the case with the 410 nm peak. The peak intensity showed no
simple power dependence of formal concentration, however; log-log plots
were curved, of slope around five. ﬁ

As in the case of feature I of the absorption spectrum, the emission

intensities were temperature dependent, decreasing with increasing

temperature, as would be expected if they were due to one or another

oligomer. The 410 nm exission (366 excitation) gave a slightly curved
Arrhenius plot for data over the range of 2 - 25 °C (about 0.24 M
solutions), of average slope corresponding to a heat of oligomer formation
of - 9.0 kcal mole']. The data for emission in the 500-530 nm region
were alsc temperature dependent, again gave a slightly curved Arrhenius
plot, of slope corresrording to a heat of oligomer formation of about
-14 kcal mole‘], or significantly larger.

Excitation spectra were also obtained. First, as evident in Fig. 4,
the emission spectra are excitation wavelength dependent. Figure 5

. . . . &
illustrates this effect in more detail. L

Clearly, several components
are presert., There is one at 445 nm, strongest with 300 nm excitation,
another 3% about 46% m, strongest with 320-330 nm excitation, and another
in the rzzion of 285-2%57 i, strongest with 340 nm excitation. A weak
featurs '3 seen at arcund 325 nm.

Figure £ shows a direct excitation spectrum taken under special
conditiors. The longer wavelength emissions have a relatively long

lifetirme {see furtrer b2low) and, as to be detailed in another paper,

are quanchable by Zic:i-’.e2 oxicen and by NOZ' ion. These emissions

will be labelled 25 p-cs:-orzscences; the remaining ones will be called



fluorescences. Figure € shows the excitation spectrum of the 410 nm feature
(closer to 408 now) uncer complete phosphorescence quenching conditions.

The excitation centers at 335 nm. The solid Tine in the figure shows

the unquenched portiorn of the emission; we regard the shoulder around

460 nm as real, that is, we consider it to be a fluorescence component

and not due to incompletely quenched phosphorescence.

Emission lifetires and time-resolved spectra. - Table I summarizes the

average measured phosahrorescence lifetimes for a series of concentrations
and for both the potassium and the barium salts. Note that in each case
a single lifetime, -, is observed. There is a clear concentration effect,
the lifetime increasing with increasing concentration. There is no Sig-
nificant  variation in © with emission wavelength, however. Thus for
the 0.26 M solution of the potassium salt, T was 548 nsec at 560 nm and
555 nsec at 575 nm (353 nm excitation). This lack of wavelength
dependence contrasts with the data of Tkachuk and To]s*coi]3 which showed
v values in 77 K frozen solutions which ranged from 30 nsec at 470 nm

to 1.2 usec at 520 nn.  However, our emissions labelled II and III in
Fig. 4wvereprompt a: rzo- temnerature (< 9 nsec). Cne or another of

nur observed emiszicnz reav corres;o&d to their 30 nsec emission at

77 XK.

Time resolved e~i:s%2~ spectirs ave shown in Fig. 14 of Ref. 38. Cne

spectrum, coilec <! “ .- e Tirsc gpproxirately 30 nsec following the

353 nm excitation ;. :z .o D ATEM KPPt(CN)z) shows two peaks, corresponding
to features I anz 1107 - - . 172 6, A second spectrum, taken

with a 200 ncec dejz,. "< o c-v = ¢only feature I as a broad emission

centered at 527 i o2 mrzeilTs cropt wave]ength shoulder.




Polarization. - Some preiiminary experiments were carried out to

determine the polarization of the emissions, as given by

P={I_ - Ixy)/(lz + Ixy) (2)

2

Here, z is the direction of polarization of the exciting pulse. The
observed P for 0.0991 M Ba[Pt(CN)4] was 0.54 for 410 nm emission, 0.49
for 440 nm emission, and 0.275 for phosphorescent emission at 512 nm.
The general implication of the results (see Refs. 10,42) is that

the fluorescence lifetime is shorter than the diffusional rotation time,
while the phosphorescence t is comparable to it, around 500-600 nsec.

Excited state absorption. - Several transient absorptions were

observed. The first two have absorption maxima at 640 and 720 nm, as
shown in Fig. 7 and disappeared with the phosphorescence 1ifetime. The
spectra were taken by sequential measurements at successive wavelengths.
A third feature has a band maximum around 825 nm, and a 2 usec lifetime.
This last was unatfected by dissolved oxygen sufficient to quench the
phosphorescence. e suspect this absorption to be due to a chemical
intermediate rather than to an excited state. If it is an intermediate,

it is unstable and appears to return to starting complex since the PMT trace
eventually returned to paseline. Thus any photochemistry in aqueous Kz[Pt(CN)4]

solutions is reversible on this time scale (in the absence of redox quencher) .

Discussion

Our qualizative conclusions are summarizeo in the assignment table,
L : . 2-
Table I1. The inmportance of the electronic structure of Pt(CN)4
monorer s atzestes by trhe evistence of some twelve previous attempts

22,23 (

at evcited ctate 3ssigrinants

See Ref. 30 in particular). Our




contribution to the situation is in the information of Fig. 3, which shows,

for the first time, that the bands we label V and III do not obey Beers

Taw, but partiaily disappear with increasing concentration. Referring

to March and Mil]er,30 our bands V and I[Il deconvolute into two gaussian
components each, and our cbservation is essentially that one of the
components of each band disappears (or shifts to some hidden position)

on oligomerization. Of the six low-lying spin-orbit allowed transitions,
only two are of d, parentage, 1A]g -~ AZU(]AZU) and ]A1g > Eu(3A2u)’ These
should be the concentration sensitive transitions. The reason is that
oligomerization should strongly perturb orbitals of d22 parentage, through
a Davydov shift to lower energy as Pt-Pt interaction occurs, while orbitals
of other parentage should be relatively unaffected.

We can argue from the data of Yersin and G’liemann3 that the AZU(]AZU)
state lies at 45.5 kX and the Eu(3A2u) one, at 39.4 kK above the ground
state, in good correspondence with Fig. 3. These authors find, in
studying crystalline salts of Pt(CN)42-, that the z-polarized absorption

-fits the equation E = 45,5 - 8x10° R3

(R in R) which, in the monomer
limit of R > =, extrapolates to just 45.5 kK. Mext, the fluorescence
fits the equation E = 22,9 - 8x105 R'3, corresponding to a Stokes' shift
of 2.6 kK. The phosphsrescence then fitted the equation E = 36.8 -
6;3x105 R'3, and if we 2d4 the same Stokes' shift, the monomer limit
gives 39.4 kK for the iriglet absoopticn.

With the above &ssianrents pinned, we can make the remaining
ones for the menorer, 2t listed in Table III. These are consistent with

the available cata, inciciing the €D, mcp,24»26 32

and polarization

results.




The assignments involving oligomers are necessarily qualitative

-

as to state designation. First, we will take as acceptable that if a

givenﬂ%eature depends on the nth power of concentration, then the
correspording n-ner is implicated. This stipulation neglects the possibly
significant perturbation of ionic strength and ion-association effects
at the relatively high concentrations involved. These effects,
qualitatively, are in the direction of producing more association than
corresponding to n, that is, the apparent n value will be too large.
However, comparison of curves b and ¢ of Figure 4 suggests that while
ionic strength has an effect, it is not so large as to change the nearest
integrai value of n. This conclusion also applies to absorption feature I.
First, we see no absorption attributable to dimer. Judging from
the findings with rhodium phosphine, arsine, carbonyl, or isocyanide
conplexes, dimer Davydov shifts are of the order of 6.5 kK.43’44
If this were the case here, dimer absorption would be hidden under our
bends 1I1 and II. The first oligomer we identify is the trimer, assigned
from the concentration dependence of the intensity of band I. The
deperdarce of Eapp on C2 holds essentially over the whole band, so that
the w2lative broadness of this band appears not to be due to absorption
covtrfiutions by nigher oligomers., Possibly the broadness reflects
wotreatiarst lcoseness in the trimer. e assign the 353 nm fluorescence,
2 T ooF Bi-. 40 35 trimer fluorescence, taking as reasonable the
ot TToker’ shift of 5.3 kK. It was not possible to verify the
cIi-Teltiaen Zependence of the intensity of this emission because of
s erzzgestion groblems, |
Tre 203 nn emiction, unguenchable aﬁd hence also a fluorescence,

Friorolomcenteaticon Zanzadence of intensity indicating the source to




be a tetramer. Its excitation peak is around 330-340 nm (Fig. 5) and,

applying the same Stokes' shift as found above, we place the tetramer
absorption at 340 nm. The next fluorescence peak is around 460 nm,
as seen in Fig. 6. We take this to be pentamer fluorescence and, again
applying the same Stokes' shift, estimate the pentamer absorption to
be at 370 nm. Yet another fluorescence is indicated in Fig. 6, at
around 530 nm. At this point, the species is best designated as some
n-mer.

Turning to the long-lived, quenchable emission, Fig. 5 indicates
a component around 445 nm; the excitation is around 300 nm, suggesting
that the emission is trimer phosphorescence. The 485 nm peak, Fig. 4(d)
should be assigned as tetramer phosphorescence, but the concentra-
tion dependence of intensity in this wavelength region suggests a
higher n-mer, and identification has at this point become uncertain.

While we can tentatively identify various phosphorescences, it
should be recalled that they show a single exponential decay
over the wavelength region involved. Very likely, excitation energy
transfer processes couple the various oligomers. The observed lifetime
is thus a complex function of the various concentrations and energy
transfer rate constants.

The two excited state absorption features involve transition
energies large enough that we are nratably dealing with other than LUMO
states. Actual assignment seems not possible.

A final consideration is the following. The literature gives a

8

Tower limit for the Davydov shift at the point of precipitation of d
square planar complexes as about 16 kK. The combination of Stokes'

shift and singlet-tripiet splitting in our case runs between 8.6 and




7.
4
f
l
¢

11.1 kK. There could thus be a total of some 27 kK between the monomer
singlet-singlet absorption and the phosphorescence at the oljgomeriza-

tion or precipitation limit. The energy difference between the 560 nm

phosphorescence and the 216 nm absorption is 28.3 kK, in reasonable

agreement with the estimate.
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Average lifetime (+ 5%) at 510 nm of aqueous, argon deoxygenated

S——

solutions of the barium and potassium tetracyanoplatiniates.

Salt Conc. Temp. Lifetime
| K 0.44 M 20-22°C 660 nsec
‘i u 0.40 n 642
| " 0.37 " 642

" 0.34 m 623
. 0.29 " 595
" 0.26 m 531
Ba*? n.109 18°C 724
" 0.099 20°C 539
" 0.091 RT (~20°C) 447
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Table I11
Spectroscopic Assignments of the Absorption-Bands
Band Designation Wave- Have Transition Polariza- Parentage
Fig. 3 Ref. 30 length, nm number, kK 1A1g to tion
1
y 6 213 46.8 E,( Eu) Xy eg(xz,yz)
1 2
5 216 46.2 Ayl Ay) z a]g(l )
3
v 4 243 1.1 Eu( B]u) both bzg(xy)
3 2.
IfI 3 252 39.6 Eu( A2u) Xy a]g(z ) |
3 !
2 258 38.7 Ayl E,) z eg(xz,yz) 3
3
I1 1 280 35.8 Eu( Eu) Xy eg(xz,yz) N
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Legends for the Ficures

—  ..Figure 1. Apparent molar extinction coefficients for various

concentrations of Kth(CH)4. Concentrations: 1, 8.96x10-3 H;
2, 0.152 M; 3, 0.218 M; 4, 0.311 M; 5, 0.445 M; 6, 0.635 M.
Tenperatures: 2, 3, and 5 are at 23 °C; 4 is at 25 °C;
1 and 6 are at room temperature, ca. 26 °C.

Figure 2. Relationship between apparent extinction coefficient
(correcticn for a small estimated monomer contribution)
and €%, 25-27 °C. Wavelengths: 1, 295 nm,; 2, 297.5 nm;
3, 362 nmm.

Figure 3. Diszppearance of monomer charge transfer bands with

increasing concentration and ionic strength, ——
4 2

9.56x10 ' M BaPt(CN)4; ..... 4.98x10°° M BaPt(CN)4 in

‘ 0.376 M BaC]z; ----- estimated dimer absorption spectrum,

(£

Figure F-%cci~r cnectra of aqueous K2Pt(CN)4 at 26 °C. (a) 0.56 M,
366 m excitation; (b) 0.793 M, 366 nm excitation; (c) 0.70 M
in 0.783 M KC1, 366 nm excitation; (d) 0.0996 M, 313 nm
excitation, i3a+2 salt.

Figure 5, Excitation wavelength dependence of the phosphorescence

300 nm;

tang, 5.1 Y4 BaPt(CN)4. Excitation:
..... 310 iy ----- 320 nmy ——— 330 nm; ++++ 340 nm.
Fizure 6§, Ixcitaticn and emission spectra for 0.40 M K2Pt(CN)4
under cenditions of complete phosphorescence quenching
(.0 v KWSZ). Dashed line: excitation spectrum; solid

lTir2: enissicn spectrum for 328 nm excitation.

Figure 7. Sicitzd stzte and chemical transient absorption spectra.

109

Ccper c.r.z: 402 nsec after pulse; Tower curve: 2.9 ysec
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